WiP: Where’s Eve? Evaluating Student Threat Modeling Performance and
Perceptions

Carson Powers, Nickolas Gravel, Maxwell Mitchell, and Daniel Votipka
Tufts University
{carson.powers, nickolas.gravel, maxwell.mitchell, daniel.votipka} @tufts.edu

Abstract

The process of identifying threats and developing mitiga-
tion strategies—referred to as Threat Modeling (TM)—is
an important step in the early phases of secure system
development. Despite being highly recommended and
sometimes required by federal regulation, there has been
limited work investigating developers’ ability to perform
this task. In particular, we focus on students to understand
how well prepared they are upon entering the workforce
and guide future work to improve education in this do-
main. To answer this question, we conducted preliminary
semi-structured interviews asking students to complete
a TM exercise while describing their thought process
aloud. Our initial results indicate students struggle to
identify technically detailed threats and that the concept
of repudiation is particularly confusing to students. We
conclude with recommendations to guide future work.

1 Introduction

The process of identifying threats, calculating the risk
of each threat, and developing mitigation strategies is
known as Threat Modeling (TM). TM is highly rec-
ommended for software development and related indus-
tries [11], it has been shown to support improved out-
comes in enterprise settings [12], and, in some cases,
it is required by federal regulation [5]. However, TM
is not commonly taught in undergraduate computer sci-
ence (CS) programs [4, 6]. Additionally, common CS
curriculum guidelines and recommendations have only
recently added TM [1], include TM in very limited con-
texts [9], or do not mention TM at all [7]. Therefore, it is
not clear whether early-career professionals are prepared
to effectively perform TM as needed. In fact, organiza-
tions frequently report having to give entering develop-

ers significant on-the-job training to familiarize them
with TM [14]. Further, this on-the-job training is often
not available, as many organizations do not prioritize
security or have the expertise necessary to provide this
training [3]. Therefore, we seek to understand students’
ability to perform TM to determine how to best tailor
education and tool support to meet their needs as they
perform this essential task. Specifically, we consider the
following research questions:

RQ1: Can students find threats in a system, and what are

common misconceptions?

RQ2: Are there particular threat modeling concepts stu-

dents struggle with?

Answering these questions will identify issues in stu-
dents’ processes, mental models, and knowledge-base
and suggest possible tailored education or process aides
(e.g., checklists, automated support agents).

To answer these questions, we conducted an initial
study of upper-level undergraduate CS students’ basic
TM performance. This study consisted of five semi-
structured interviews with undergraduate CS students
currently attending Tufts University. The primary inter-
view component was a TM exercise where participants
were asked to identify threats in a mock system. We also
asked students for their perception of the process — how
easy or difficult the entire process felt, and whether they
found any specific part difficult or confusing.

For the TM exercise, students used the STRIDE
method. STRIDE is a TM approach originally developed
at Microsoft [2], which focuses the developer’s attention
on potential categories of threats through the use of a
helpful mnemonic. STRIDE is an acronym for Spoofing,
Tampering, Repudiation, Information disclosure, Denial
of service, and Elevation of privilege. We choose to use
the STRIDE framework for this study because it is very



common in industry [10, 11, 13, 16], it forms the basis
of other methodologies [16], it is more flexible and ro-
bust than other specialized frameworks [10, 17], and it is
relatively straightforward and simple.

Our initial results highlighted the value of hands-on
security experience and students’ challenges to under-
standing difficult STRIDE concepts, such as repudiation
(the ability for an attacker to deny involvement in a ma-
licious operation). Drawing on our results, we suggest
trends we plan to investigate as we continue this research.

2 Methods

To understand the challenges faced by students when
threat modeling, we utilized semi-structured interviews.
The interviews gauged participants’ previous knowledge
and exposure to TM, and evaluated their ability to create a
TM for a simple system using a popular TM framework,
i.e., STRIDE [11]. In this section, we discuss partici-
pant recruitment, outline our interview’s structure, and
describe our analysis method and study limitations. All
study procedures were approved by the Tufts University’s
Institutional Review Board.

Study Recruitment We advertised the study with
posters around the Tufts’ CS department and at other
places frequented by CS students around campus. We
also posted advertisements for our study on discussion
boards for CS courses. Interested students were asked to
complete an initial consent form, which covered collec-
tion of initial screening information, a short screening
survey to indicate their current degree year and any secu-
rity courses completed at our institution or elsewhere. We
restricted participation to students who had completed at
least 2.5 years of the undergraduate curriculum. We chose
this threshold as these are students who will soon enter
the workforce and to ensure students had completed the
necessary system development courses to have sufficient
technical knowledge to understand our mock system.

2.1 Interview

Pre-exercise questions and training Qualifying stu-
dent volunteers were invited to participate in a semi-
structured interview. At the start of the interview, we
asked participants to complete an additional consent
form specific to the interview, which authorized to audio
recording of the interview.

To ensure all participants had some familiarity with
TM prior to the start of the exercise, we used a short
lesson to teach all participants generally how to use

User (U)

Trust Boundary (T0)

Other

Internet Applicati
Browser (U1) pp{ﬁg)ons

1 i :
v L

CPU (U0) ‘

l Trust Boundary(T2)

Trust Boundary (T3)

Authentication
Service
(B3)

Database
(B4)

[ S — A__
Trust Boundary (T1) |

CPU (BO)
[ [}
Banking Other
Application Applications

(B1)

|
I
| (A R
|
i (82)

Bank Employee (B)

Figure 1: Exercise Mock System

the STRIDE TM process. Our STRIDE lessons first
described the graphical elements of a STRIDE system
model using an example data flow diagram from TM: De-
signing for Security [11]. Then, we described each threat
in the STRIDE mnemonic, giving nontechnical examples
for each, similar to the approach in Stevens et al. [12].

Threat modeling exercise The central interview com-
ponent was a TM exercise. Participants were asked to
identify threats in a mock system and suggest possible
mitigations to these threats while being observed by a
researcher. The model presented to participants is given
in Figure 1.

The mock system is a simple banking service, with
bank (B) and client (U) components that communicate
over the Internet. In the bank component, a database ser-
vice holds all client financial information (B4). Access to
this service is mediated by an authentication service (B3)
that users must first connect to and provide their creden-
tials. Bank employees can access the database through
a banking application (B1) installed on machine (B0)



located on the same local area network as the database
service. The local machine also hosts other applications
(B2) not related to the banking database. Clients access
the banking database over the Internet through their Inter-
net browser (U1) on their personal device (UO), which is
expected to also host other unrelated applications (U2).

We chose a relatively simple mock system to ensure
participants had sufficient development knowledge to
easily understand the system’s functionality. While this
system is relatively simple, it exposes multiple attack
vectors (e.g., malicious user, insider threat, man-in-the-
middle) and could potentially have several different types
of vulnerabilities (e.g., incorrect or insufficient authenti-
cation, faulty input parsing, lack of protection of data in
transit). It is likely a more complex system would cause
more issues for participants, so we expect responses in
this exercise will offer an upper bound on threat modeling
performance.

After showing participants the mock system and pro-
viding a high-level functionality description, we in-
structed participants to identify threats in the system and
suggest mitigations. We also asked participants to think
aloud. Because the system diagram is not an exhaus-
tive definition of the system’s functionality, we informed
participants that they could make assumptions about the
system (e.g., they could assume Internet traffic uses SS-
L/TLS encryption), but all assumptions would need to be
explicitly stated.

To avoid biasing participant responses, the interviewer
mostly quietly observed the participant during the exer-
cise. However, if the participant only described a threat
very vaguely (e.g., the database could be tampered with),
then the interviewer asked the participant to provide more
details if possible. In these situations, the interviewer did
not provide any information beyond that already stated by
the participant and simply asked for more details. Also,
in cases where it appeared participants were implicitly
making assumptions about the system, the interviewers
probed the participant to make these assumptions ex-
plicit.

Post-exercise questions and debrief After completing
the exercise, we asked the participant several questions
about their experience. Specifically, we sought to deter-
mine whether participants perceived TM as useful and
doable with a reasonable amount of effort and time (RQ1).
We also asked participants whether they found specific
parts of the STRIDE framework to be particularly chal-
lenging or easy (RQ2).

Because there was potential for psychological harm
if a participant believed they performed poorly on the

TM exercise, we conducted a debrief at the end of each
interview. During this debrief, we discussed the set of
potential threats in the mock system and reminded par-
ticipants that their performance does not impact their
compensation, and that they can withdraw from the study
at any time for any reason.

2.2 Analysis

We used quantitative and qualitative measures of perfor-
mance and participant perceptions of threat modeling.

Quantitative analysis To numerically compare partici-
pant performance, we created a point system to evaluate
each TM’s thoroughness. Each reasonable threat iden-
tified increases the model’s score by one point. If the
participant listed a threat that could not exist given the di-
agram, that threat was deemed unreasonable and did not
gain a point—though we tracked invalid threats for later
analysis. We also did not award points when the response
was too vague to effectively determine a particular prob-
lem. Participants were also given an additional point for
each STRIDE category they identified a threat in, for a
possible 6-point bonus. Participants were not informed
of this scoring system during the interview and were
not provided the assigned score for their threat model
to avoid motivating artificial behavior to game the scor-
ing mechanism. Our scoring system is simply used as a
method for quantifying participant TM output.

Qualitative analysis We performed a thematic analy-
sis of the threats identified, as well as the strategies stu-
dents developed. For example, did participants begin by
considering points of human input (an attacker-focused
approach) or start first by identifying the most important
assets in the system (a “center of gravity” approach [12])?

3 Preliminary Results

This section describes themes identified in our initial
evaluation from the TM exercise and the post-exercise
questions. Note, these trends are drawn from a small
sample and may not generalize. We report these trends
to suggest directions for analysis in a larger-scale study.

3.1 Participants

There were five participants in our initial study pilot,
covering the spectrum of security experience. Two partic-
ipants had no prior security experience. Two participants
had previously completed a computer security course:



25

20

Threats Score

Assumptions
O No Experience [ Security Course(s) M Professional Experience

Figure 2: Participant performance on three metrics—
Number of assumptions, number of threats, and final
score—divided by prior security experience

one completed an introductory course which broadly cov-
ered a range of topics in security with hands-on technical
assignments, and the other completed a non-technical
course that covered cyber threats from a policy and legal
perspective. The remaining participant had previously
taken the same introductory security course and had pro-
fessional experience in a security-related role as an intern.
All our participants were in the second semester of their
third year of their undergraduate degree.

3.2 Threat Modeling Performance (RQ1)

We first look at how well participants performed during
the TM exercise by considering the number and quality
of threats identified and assumptions made and contrast-
ing results between participants with different levels of
security experience. Figure 2 shows the number of as-
sumptions and threats identified by each participant, as
well as their final assessed score. Each bar represents a
unique participant and bars are colored to indicate the
participants’ level of security experience.

Most participants identified few detailed threats On
average, participants identified about nine threats during
the TM exercise. However, in many cases, these threats
were marked invalid. This was particularly true for P2
and P3 (see Figure 2), who identified more threats than
the other student with similar experience (P1 and P4, re-
spectively), but scored lower. These threats were often
marked invalid because the participant could not deter-
mine any details of the threat, not because of a miscon-
ception about security. For example, one participant ex-
plained that a denial of service threat could happen at the

gateway between the Internet and the authentication ser-
vice. However, when probed for how this could happen,
they could not suggest a possible method to be defended
against. This indicates that students may be able to iden-
tify areas for potential security issues, but would need
additional expert or automated support to determine more
specific threats.

Practical experience improves threat modeling PS5,
the only participant with practical security experience,
performed dramatically better than all other participants.
They identified 7 more threats and received 11 more
points than the every other participant. They were also the
only participant that identified threats in every STRIDE
category. This difference may be unique to P5, but further
investigation is necessary to determine if this dramatic
gap exists across the broader population and whether just
a small amount (one summer) of hands-on experience
can significantly improve TM performance.

Security courses did not improve performance Par-
ticipants who took CS security courses and did not have
professional experience (P3 and P4), on average, iden-
tified fewer threats and scored worse than participants
with no experience (P1 and P2). Further, we observed
that both groups focused on less-technical business logic
vulnerabilities and did not consider vulnerabilities in spe-
cific technologies, such as buffer overflows and SQL in-
jection. This result was particularly interesting for stu-
dents who took security courses as these topics were
covered in those courses. This result aligns with prior
work that showed students did not consider potential tech-
nical threats during code implementation that they had
been exposed to previously in lectures [15]. This result
should be investigated to determine whether it holds with
a larger number of students, and also with students ex-
posed to these concepts in different courses.

Attacker-focus improved scores Though all non-
internship students focused on nontechnical threats, some
students clearly performed better than others. The higher-
performing students appeared to use a more attack-
focused approach than those with lower scores. “Attacker
focus” in this context means that students considered
threats from a malicious adversary more than accidents
and unintentional errors. The difference in scores among
students with near-identical technical knowledge sup-
ports Hamman et al.’s separation of the hacker mindset
into technical, creative, and practical intelligence [8]. We
consider these implications further when discussing fu-
ture work.



Spoofing

Tampering
Repudiation
Info Disclosure
DoS

Elevation fo Priv

i

°

1 2 6 7 8

3 4
Number of Threats

O No Experience [ Security Course(s) M Professional Experience

Figure 3: Number of threats identified in each STRIDE
category, divided by participant prior security experience

3.3 STRIDE Category Challenges (RQ2)

Next, we investigated whether any STRIDE category was
particularly challenging for participants. Figure 3 shows
the number of threat identified for each participant, with
each row indicating a different STRIDE category.

Spoofing and DoS were reported by most participants
Spoofing threats were reported by all five participants and
Denial of Service (DoS) threats were reported by four
of five. Participants reported being the most comfortable
identifying these types of threats and found these terms
to be the most intuitive.

Repudiation was the most challenging Repudiation
was the least represented threat category. Only three
participants reported repudiation threats, and one was
deemed invalid as it was based on a security miscon-
ception. Four of five participants also reported that re-
pudiation was the most difficult category of STRIDE.
Participants reported that the term itself was confusing,
i.e., they did not understand the definition of “repudia-
tion,” and it was also difficult to know where repudiation
threats might exist.

4 Discussion and Conclusion

After asking five undergraduate CS students to identify
threats in a mock system, we observed that hands-on
professional experience can have dramatic benefits, that
introductory security courses did not improve threat mod-
eling performance, and that students are particularly con-
fused by repudiation threats. Therefore, in our future
work, we plan to further investigate these trends through
two specific changes: 1) recruitment of early-career pro-
fessionals along with students to measure the impact of

professional experience, and 2) recruit students from mul-
tiple institutions to compare several security introduction
courses. Making these three changes will allow us to de-
termine whether our results generalize and more clearly
identify the causes for variation in TM performance.

References

[1] NICE Framework and the NSA Knowledge Units
(KUs).

[2] The threats to our products. Technical report, Mi-
crosoft Interface, 1999.

[3] Hala Assal and Sonia Chiasson. Security in the
software development lifecycle. In Symposium on
Usable Privacy and Security, pages 281-296, Balti-
more, MD, 2018. USENIX Association.

[4] Borka Jerman BlaZi¢. The cybersecurity labour
shortage in Europe: Moving to a new concept for
education and training. Technology in Society,
67:101769, 2021.

[5] Deb Bodeau, David B Fox, and Catherine D McCol-
lum. Cyber Threat Modeling: Survey, Assessment,
and Representative Framework. Technical report,
Homeland Security Systems Engineering and De-
velopment Institute (HSSEDI), April 2018.

[6] Sam Chung, Yun-Tse Wu, Teresa Escrig, and Bar-
bara Endicott-Popovsky. Toward Software Assur-
ance: Infusing a Threat Modeling Methodology into
Beginning Level Programming Courses. CCSC:
Southwestern Conference, page 11, 2014.

[7] ABET Computing Accreditation Commission. Cri-
teria for Accrediting Computing Programs. ABET,
Baltimore, MD, USA, December 2020.

[8] Seth T. Hamman and Kenneth M. Hopkinson.
Teaching Adversarial Thinking for Cybersecurity.
Journal of The Colloguium for Information System
Security Education, 4(1), October 2016.

[9] Association for Computing Machinery (ACM) Joint
Task Force on Computing Curricula and IEEE Com-
puter Society. Computer Science Curricula 2013:
Curriculum Guidelines for Undergraduate Degree
Programs in Computer Science. Association for
Computing Machinery, New York, NY, USA, Jan-
uary 2013.



[10]

[11]

[12]

[13]

[14]

Rafiullah Khan, Kieran McLaughlin, David Laverty,
and Sakir Sezer. STRIDE-based threat modeling for
cyber-physical systems. In 2017 IEEE PES Innova-
tive Smart Grid Technologies Conference Europe
(ISGT-Europe), pages 1-6, September 2017.

Adam Shostack. Threat Modeling: Designing for
Security. John Wiley & Sons, Indianapolis, IN,
2014.

Rock Stevens, Daniel Votipka, Elissa M Redmiles,
and Michelle L Mazurek. The Battle for New York:
A Case Study of Applied Digital Threat Modeling
at the Enterprise Level. page 18, Baltimore, MD,
August 2018. USENIX Association.

Frank Swiderski and Window Snyder. Threat mod-
eling. Microsoft Press, 2004.

Alex Vieane, Gregory Funke, Robert Gutzwiller,
Vincent Mancuso, Ben Sawyer, and Christopher
Wickens. Addressing Human Factors Gaps in

[15]

[16]

(17]

Cyber Defense. Proceedings of the Human Fac-
tors and Ergonomics Society Annual Meeting,
60(1):770-773, September 2016.

Daniel Votipka, Kelsey R Fulton, James Parker,
Matthew Hou, Michelle L Mazurek, and Michael
Hicks. Understanding security mistakes developers
make: Qualitative analysis from Build It, Break It,
Fix It. page 19.

Kim Wauyts, Riccardo Scandariato, and Wouter
Joosen. Empirical evaluation of a privacy-focused
threat modeling methodology. Journal of Systems
and Software, 96:122—-138, October 2014.

Wenjun Xiong, Emeline Legrand, Oscar Aberg, and
Robert Lagerstrom. Cyber security threat modeling
based on the MITRE Enterprise ATT&CK Matrix.
Software and Systems Modeling, 21(1):157-177,
February 2022.



	Introduction
	Methods
	Interview
	Analysis

	Preliminary Results
	Participants
	Threat Modeling Performance (RQ1)
	STRIDE Category Challenges (RQ2)

	Discussion and Conclusion

